

ТЕХНИЧЕСКАЯ НОТА 3312Е

LB03

Особенности автомобилей с кузовом Седан

Если некоторые вопросы не рассмотрены в этой технической ноте, см. РУКОВОДСТВО ПО РЕМОНТУ 337.

77 11 203 863 СЕНТЯБРЬ 1999 EDITION RUSSE

"Методы ремонта, рекомендуемые изготовителем в настоящем документе, соответствуют техническим условиям, действительным на момент составления руководства.

В случае внесения конструктивных изменений в изготовление деталей, узлов, агрегатов автомобиля данной модели, методы ремонта могут быть также соответственно изменены".

Все авторские права принадлежат Renault.

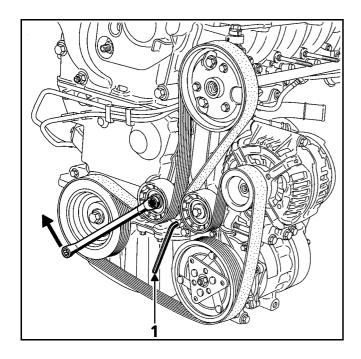
Воспроизведение или перевод, в том числе частичные, настоящего документа, равно как и использование системы нумерации запасных частей, запрещены без предварительного письменного разрешения Renault.

Содержание

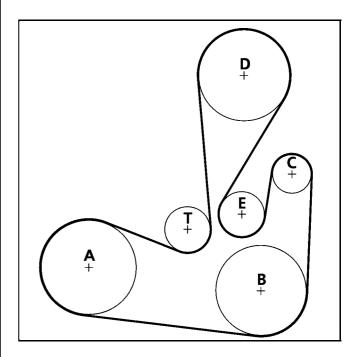
Страницы

Страницы

07	СПРАВОЧНЫЕ И РЕГУЛИРОВОЧНЫЕ ДАННЫЕ		17	СИСТЕМЫ ЗАЖИГАНИЯ - ВПРЫСКА	
12	Натяжение ремня привода вспомогательного оборудования Шины Тормозная система Регулятор тормозных сил Высота контрольных точек нижней части кузова Контрольные величины углов установки передних колес Контрольные величины углов установки задних колес	07-1 07-3 07-2 07-5 07-6 07-8		Технические характеристики Функция электронной блокировки запуска двигателя Стратегия впрыска/кондиционер Коррекция режима холостого хода Регулирование состава топливной смеси Адаптивная коррекция состава топливной смеси Централизованное управление температурой охлаждающей жидкости Фазосдвигающее устройство распредвала Компьютер	17-1 17-2 17-3 17-4 17-5 17-7 17-8 17-9
12	ТОПЛИВОВОЗДУШНАЯ СМЕСЬ				
	Технические характеристики Корпус воздушного фильтра Коллекторы	12-1 12-4 12-5	20	СЦЕПЛЕНИЕ Кожух сцепления и ведомый диск	20-1
13	ПОДАЧА ТОПЛИВА	12.1	21	МЕХАНИЧЕСКАЯ КОРОБКА ПЕРЕДАЧ	
	Устройство предотвращения перегрева	13-1		Паспортные данные Передаточные числа	21-1 21-2
14	СИСТЕМА СНИЖЕНИЯ ТОКСИЧНОСТИ			Заправочные емкости - Используемое масло	21-3
	Система рекуперации паров бензина	14-1	36	РУЛЕВОЕ УПРАВЛЕНИЕ	
16	ЗАПУСК - ЗАРЯДКА			Насос усилителя рулевого управления	36-1
	Генератор	16-1	62	СИСТЕМА КОНДИЦИОНИРОВАН ВОЗДУХА	НИџ
				Общие сведения	62-1


СНЯТИЕ

Установите автомобиль на двухстоечный подъемник.


Отсоедините аккумуляторную батарею.

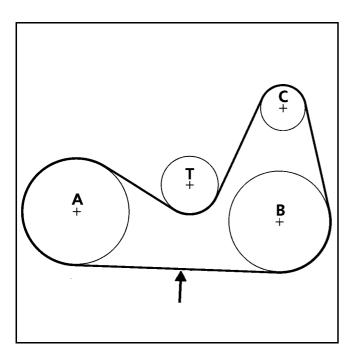
Снимите колесо, а также передний правый грязезащитный щиток.

Поверните автоматический натяжитель ремня в направлении, указанном ниже, с помощью накидного коленчатого гаечного ключа на 13 мм. Затяните натяжной ролик с помощью шестигранного гаечного ключа (1) на 6 мм.

ГЕНЕРАТОР, РУЛЕВОЕ УПРАВЛЕНИЕ С УСИЛИТЕЛЕМ И КОНДИЦИОНЕР

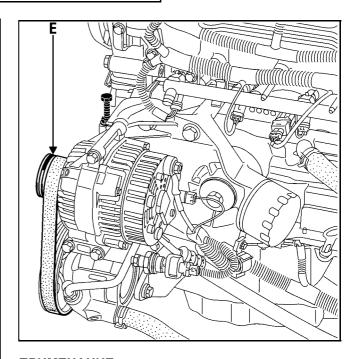
- А Коленчатый вал
- В Компрессор кондиционера
- С Генератор
- D Насос усилителя рулевого управления
- Е Обводной ролик
- Т Ролик автоматического натяжения

УСТАНОВКА


Дальнейшую сборку выполняйте в порядке, обратном снятию.

СПРАВОЧНЫЕ И РЕГУЛИРОВОЧНЫЕ ДАННЫЕ

ŀ	НЕОБХС	ОДИМЫЕ ПРИСПОСОБЛЕНИЯ И СПЕЦИНСТРУМЕНТ
Mot.	1273	Прибор для проверки натяжения ремня
Mot.	1505	Приспособление для проверки натяжения ремня привода


ГЕНЕРАТОР И УСИЛИТЕЛЬ РУЛЕВОГО УПРАВЛЕНИЯ

Поликлиновой ремень привода усилителя рулевого управления	Натяжение (US = единица SEEM)	Натяже- ние (Гц)
108±6	Установка:	190 ±10
60	Минимальное рабочее значение	-

- А Коленчатый вал
- В Насос усилителя рулевого управления
- С Генератор
- Т Натяжной ролик
- → Точка контроля натяжения

ПРИМЕЧАНИЕ: см. **Техническую ноту 3247A** по поводу использования **Mot. 1505.**

ПРИМЕЧАНИЕ: на ремне привода вспомогательного оборудования имеется пять клиньев, а на шкивах генератора, насоса рулевого управления с усилителем и коленчатого вала шесть ручьев. Поэтому, при установке ремня, обязательно убедитесь в том, что ручей на краю шкива (E) остается "свободным".

СПРАВОЧНЫЕ И РЕГУЛИРОВОЧНЫЕ ДАННЫЕ Шины

Автомобиль	Колесный диск	Шины	Давление воздуха в холодных шинах (бар) (1)	
			Передние колеса	Задние колеса
LB03	5 B 13	175/70R13T 155/80R13T	2,3	2,1

⁽¹⁾ При использовании с полной нагрузкой и на автострадах.

Момент затяжки болтов крепления колес: 9 даН.м.

Биение колесного диска: 1,2 мм

СПРАВОЧНЫЕ И РЕГУЛИРОВОЧНЫЕ ДАННЫЕ Тормозная система

Автомобиль	-	озных дисков мм)	Диаметр тормозных барабанов (в мм)		
	Номин.	Мин.	Номин.	Макс.	
LB03	LB03 12		180,25	181,25	

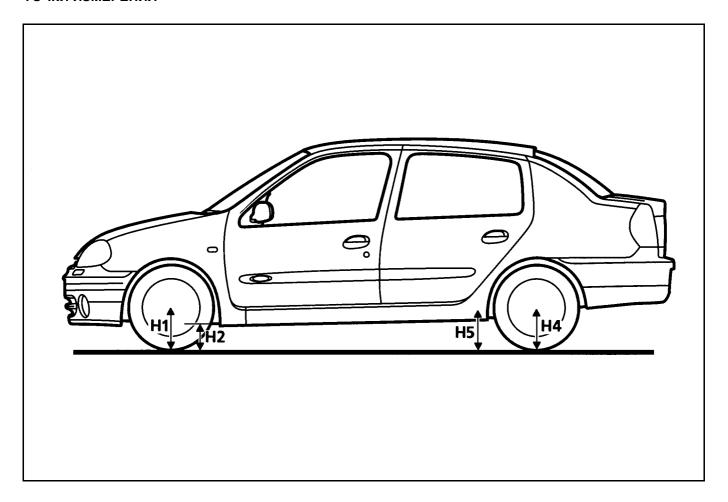
(1) Тормозной барабан: максимально допустимый диаметр при износе.

Максимальное биение тормозного диска составляет 0,07.

	Толщина тормозных колодок (в мм)						
Автомобиль	Передние колеса (включая основание)		Задние	колеса	Тормозная жидкость		
	Новые	Мин.	Новые	Мин.			
LB03	18,2	6	3,1 (2) 4,5 (1)	2	SAE J1703 DOT 4		

- (1) Первичная тормозная колодка
- (2) Вторичная тормозная колодка

СПРАВОЧНЫЕ И РЕГУЛИРОВОЧНЫЕ ДАННЫЕ Регулятор тормозных сил


ТОРМОЗНОЕ ДАВЛЕНИЕ

Автомобиль	Количество топлива в баке	Контрольное давление (1) (бар)		
АВТОМООИЛЬ	(с водителем на борту)	Передние тормоза	Задние тормоза	
LB03		100 —	→ 47 ⁺⁰ ₋₁₈	

(1) Проверка выполняется двумя манометрами, установленными на контурах диагональной схемы.

СПРАВОЧНЫЕ И РЕГУЛИРОВОЧНЫЕ ДАННЫЕ Высота контрольных точек нижней части кузова

ТОЧКИ ИЗМЕРЕНИЯ

СПРАВОЧНЫЕ И РЕГУЛИРОВОЧНЫЕ ДАННЫЕ Высота контрольных точек нижней части кузова

Автомобиль	Спереди	Сзади	Размер X (мм)	
	H1 - H2 = мм	H4 - H5 = мм	D и G	
LB03	78	- 34	-	

Допуск: ± 10,5 мм

Разница между правой и левой стороной одной оси автомобиля не должна превышать **5 мм**, при этом водительская сторона должна находиться всегда на более высоком уровне.

После проведения работ по изменению высоты контрольных точек нижней части кузова следует также провести регулировку фар и ограничителя тормозных сил.

СПРАВОЧНЫЕ И РЕГУЛИРОВОЧНЫЕ ДАННЫЕ

Контрольные величины углов установки колес передней подвески

углы	ЗНАЧЕНИЯ	ПОЛОЖЕНИЕ ПЕРЕДНЕЙ ПОДВЕСКИ	РЕГУЛИ- РОВКА
ПРОДОЛЬНЫЙ НАКЛОН ОСИ ПОВОРОТА КОЛЕСА	2°50' 2°20' 1°50' Максимальная разница правый- левый = 1°	H5 - H2 = 80 H5 - H2 = 100 H5 - H2 = 120	НЕ РЕГУЛИ- РУЕТСЯ
РАЗВАЛ КОЛЕС	- 0°19' - 0°26' - 0°33' Максимальная разница правый- левый = 1°	H1 - H2 = 78 H1 - H2 = 92 H1 - H2 = 106	НЕ РЕГУЛИ- РУЕТСЯ
ПОПЕРЕЧНЫЙ НАКЛОН ОСИ ПОВОРОТА КОЛЕСА	10°12′ 11°07′ 11°33′ Максимальная разница правый- левый = 1°	H1 - H2 = 78 H1 - H2 = 92 H1 - H2 = 106	НЕ РЕГУЛИ- РУЕТСЯ
схождение колес	(Для двух колес) +0°17' ± 25' развал +1,7 ± 0,25 мм	БЕЗ НАГРУЗКИ	Регулируется за счет вращения муфт тяги рулевого привода: 1 оборот = 30' (3 мм)
ПОЛОЖЕНИЕ ДЛЯ ЗАТЯЖКИ САЙЛЕНТ- БЛОКОВ	-	БЕЗ НАГРУЗКИ	-

СПРАВОЧНЫЕ И РЕГУЛИРОВОЧНЫЕ ДАННЫЕ

Контрольные величины углов установки задних колес

углы	ЗНАЧЕНИЯ	ПОЛОЖЕНИЕ ЗАДНЕЙ ПОДВЕСКИ	РЕГУЛИ- РОВКА
РАЗВАЛ КОЛЕС	- 0°46' ± 20'	БЕЗ НАГРУЗКИ	НЕ РЕГУЛИ- РУЕТСЯ
схождение колес	(Для двух колес) Схождение - 20' ± 30' - 2 мм ± 3 мм	БЕЗ НАГРУЗКИ	НЕ РЕГУЛИ- РУЕТСЯ
ПОЛОЖЕНИЕ ЗАТЯЖКИ САЙЛЕНТ-БЛОКОВ	-	БЕЗ НАГРУЗКИ	-

ТОПЛИВОВОЗДУШНАЯ СМЕСЬ Технические характеристики

A	Kan a Sua	Двигатель						Hanua		
Автомо- Коробка биль передач		Тип	Индекс	Диаметр цилиндра (мм)	Ход поршня (мм)	Объем двигателя (см ³)	Степень сжатия	Каталити- ческий нейтра- лизатор	Норма токсичности	
LB03	JB1	K7J	700	79,5	70	1390	9,5 /1	♦ C63	EU 93	

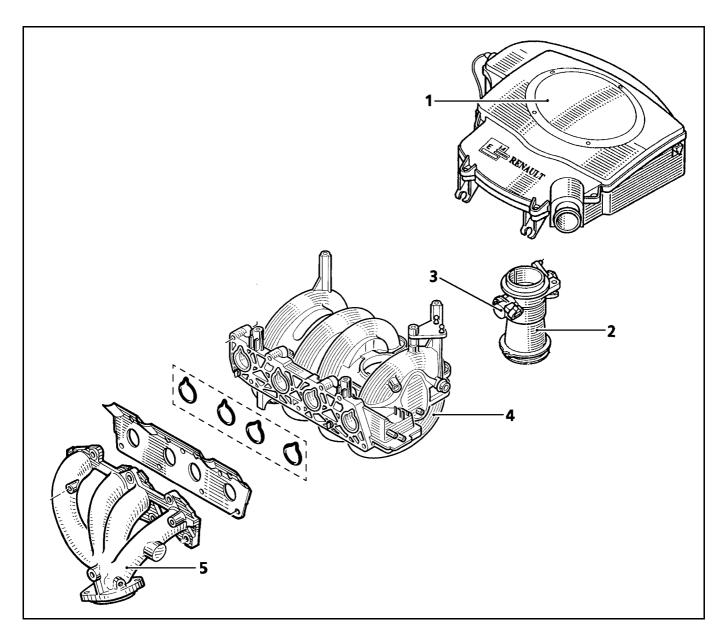
Двигатель		Провер	ка при работ	е двигателя	в режиме хол	остого хода	
		Частота		Топливо (минимальное октановое число)			
Тип	Индекс	вращения (об/мин)	CO (%) (1)	CO ₂ (%)	СН (частей на миллион)	Лямбда (λ)	Í
K7J	700	750	0,5 макс.	14,5 мин.	100 макс.	0,97<λ<1,03	Неэтилированный бензин (ОКТАНОВОЕ ЧИСЛО 95)

(1) при 2 500 об/мин., содержание СО должно составлять около 0,3 от максимального.

Температура в °С (± 1°)	- 10	25	50	80	110
Датчик температуры воздуха типа СТN - сопротивление с отрицательным температурным коэффициентом Сопротивление в омах	от 10450 до 8525	от 2120 до 1880	от 860 до 760	-	-
Датчик температуры воды типа CTN - сопротивление с отрицательным температурным коэффициентом Сопротивление в омах	ı	от 2360 до 2140	от 770 до 850	от 275 до 290	от 112 до 117

^{*} При температуре охлаждающей жидкости выше **80** °C и после устойчивой работы двигателя с частотой вращения **2 500 об/мин.** в течение примерно **30 секунд**. Проверку выполняйте после возвращения на режим холостого хода.

^{**} Допускаемые нормативы указаны в технических условиях для соответствующих стран.


^{***} Допускается использовать неэтилированный бензин с октановым числом **91**.

НАИМЕНОВАНИЕ	МАРКА/ТИП	ХАРАКТЕРИСТИКИ
Компьютер	SIEMENS "SIRIUS"	90 контактов
Система впрыска	-	Многоточечный последовательный впрыск
Шаговый электродвигатель	PHILIPS	Сопротивление \approx 53 Ω при 25°C
Потенциометр дроссельной заслонки	PIERBURG	Входит в состав блока дроссельной заслонки Сопротивление токопроводящей дорожки: < 1050 Ω Сопротивление подвижного контакта: 1200±240 Ω
Магнитный датчик (ВМТ и скорости вращения коленвала двигателя)	ELECTRIFIL или SIEMENS	Собственный разъем Сопротивление = от 200 до 270 Ω
Электромагнитный клапан абсорбера	SAGEM	Встроен в абсорбер Сопротивление: 26 \pm 4 Ω при 23 °C
Форсунка	SIEMENS	Сопротивление: 14,5 Ω при 20 ° C Расход при утечке: 0,7 см³/мин. максимально
Датчик давления	DELCO ELECTRONICS	Сопротивление ≈ 100 к Ω
Датчик детонации	SAGEM	Пьезоэлектрического типа - Затяжка с моментом 2 даН.м
Кислородный датчик	NTK	Контакты 80 (масса) и 45 (сигнал) Сопротивление нагревателя Сопротивление = 6 ±1 Ω при 23°C Богатая топливная смесь > 750±70 мВ Бедная топливная смесь < 150±50 мВ
Датчик давления хладагента	TEXAS INSTRUMENTS	Для работы в холодном контуре регулирования (компьютер кондиционера входит в состав компьютера впрыска)

ТОПЛИВОВОЗДУШНАЯ СМЕСЬ Технические характеристики

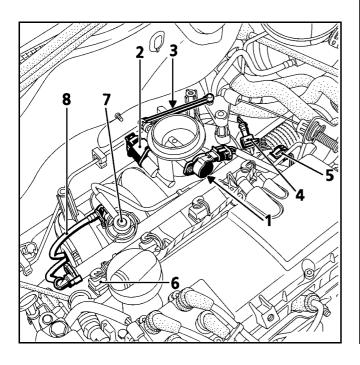
НАИМЕНОВАНИЕ	МАРКА/ТИП	ХАРАКТЕРИСТИКИ
Катушка зажигания	SAGEM	Катушка моноблочного типа с четырьмя выходами Первичное сопротивление: $7,2\pm1$ К Ω Вторичное сопротивление: $7,2\pm1$ К Ω Затяжка на $0,9\pm0,1$ даН.м А: управление цилиндрами 1 и 4 В: управление цилиндрами 2 и 3 С: питание D: питание (внутренняя цепь)
Свечи	EYQUEM	RFC 50 LZ 2E Затяжка с моментом: от 2,5 до 3 даН.м
Давление в коллекторе на холостом ходу	-	330 ± 40 мбар
Топливный насос погружного типа	-	3 бар±0,06 на 80 л/ч для контура с возвратом 3,5 бар; 160 л/ч для контура без возврата

ТОПЛИВОВОЗДУШНАЯ СМЕСЬ Воздушный фильтр

- 1 Воздушный фильтр
- 2 Блок дроссельной заслонки
- 3 Потенциометр дроссельной заслонки
- 4 Впускной коллектор
- 5 Выпускной коллектор

МОМЕНТЫ ЗАТЯЖКИ, даН.м	\Diamond
Болт впускного коллектора	2,5±0,2
Болт выпускного коллектора	2,5±0,2
Болт приемной трубы выпускного	
коллектора	2±0,2

СНЯТИЕ ВПУСКНОГО КОЛЛЕКТОРА


Установите автомобиль на двухстоечный подъемник.

Отсоедините аккумуляторную батарею.

Снимите корпус воздушного фильтра.

Отсоедините:

- потенциометр дроссельной заслонки (1),
- клапан регулирования холостого хода(2),
- тягу управления дроссельной заслонки (3),
- датчик температуры воздуха (4),
- датчик давления (5),
- форсунки (6),
- регулятор давления бензина (в зависимости от модели) (7),
- подающий и возвратный топливный трубопровод (в зависимости от модели) (8).

Снимите:

- воздушный рукав, включающий в себя потенциометр дроссельной заслонки и клапан регулирования холостого хода,
- топливораспределительную рампу вместе с форсунками и регулятором (в зависимости от модели),
- верхние болты впускного коллектора,
- подпорку впускного коллектора,
- нижние болты впускного коллектора (с нижней стороны автомобиля).

УСТАНОВКА

Предусмотрите, если это необходимо, замену уплотнений коллектора и блока дроссельной заслонки.

Вставьте нижние болты впускного коллектора одновременно с его установкой для облегчения их затяжки.После этого установите подпорку и верхние болты.

ПРИМЕЧАНИЕ: соблюдайте момент затяжки болтов впускного коллектора.

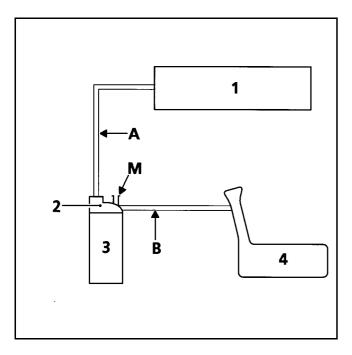
Убедитесь в том, что воздушный рукав вместе с блоком дроссельной заслонки установлен правильно.

ПОДАЧА ТОПЛИВАУстройство предотвращения перегрева

ПРИНЦИП РАБОТЫ

Система предотвращения перегрева управляется непосредственно компьютером впрыска.

Информация о температуре охлаждающей жидкости берется с датчика температуры охлаждающей жидкости системы впрыска (см. главу 17 - ЦЕНТРАЛИЗОВАННОЕ УПРАВЛЕНИЕ ТЕМПЕРАТУРОЙ ОХЛАЖДАЮЩЕЙ ЖИДКОСТИ).


После выключения зажигания компьютер впрыска переходит в режим контроля. Если температура охлаждающей жидкости превышает порог в **102** °C в течение 3 минут после остановки двигателя, то реле малой скорости электровентилятора включено.

Если температура опускается ниже **96** °C, то реле группы вентиляторов системы охлаждения двигателя выключается (длительность работы не может превышать **10 минут**).

СИСТЕМА СНИЖЕНИЯ ТОКСИЧНОСТИ Система рекуперации паров бензина

ФУНКЦИОНАЛЬНАЯ СХЕМА КОНТУРА

- 1 Впускной коллектор
- 2 Встроенный электромагнитный клапан очистки абсорбера
- 3 Улавливатель топливных паров (Абсорбер) с электромагнитным клапаном
- 4 Бак
- М Сообщение с атмосферой.
- А Трубопровод абсорбера (впускной коллектор)
- В Трубопровод бак/абсорбер

УСЛОВИЯ УДАЛЕНИЯ ВОЗДУХА ИЗ АБСОРБЕРА

Электромагнитный клапан опорожнения абсорбера управляется контактом 4 компьютера, если:

- температура охлаждающей жидкости выше 40 °C.
- температура воздуха превышает 10 °C,
- порог нагрузки достигнут,
- потенциометр дроссельной заслонки не соответствует положению отпущенной педали акселератора,
- обороты не соответствуют холостому ходу.

Возможно визуальное отображение степени циклического открытия электромагнитного клапана очистки абсорбера с помощью диагностического прибора, см. параметр "Степень циклического открытия электромагнитного клапана очистки абсорбера".

Электромагнитный клапан закрыт, если значение этого параметра меньше или равно 3 % (минимальное значение).

ПРОВЕРКА ВЫПОЛНЕНИЯ ОЧИСТКИ АБСОРБЕРА

Неисправность системы может послужить причиной неустойчивых оборотов холостого хода или самопроизвольного останова двигателя.

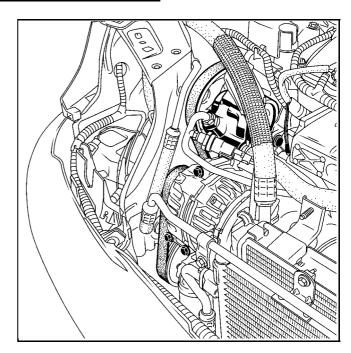
Проверьте соответствие контура (см. функциональную схему) и состояние трубопроводов до топливного бака (см. РУКОВОДСТВО ПО РЕМОНТУ 337).

F	НЕОБХОДИМЫЕ ПРИСПОСОБЛЕНИЯ И СПЕЦИНСТРУМЕНТ		
Mot.	1273	Прибор для проверки натяжения ремня	
Mot.	1505	Приспособление для проверки натяжения ремня привода	

СНЯТИЕ


Установите автомобиль на двухстоечный подъемник.

Отсоедините аккумуляторную батарею.


Особенности автомобилей, оборудованных системой кондиционирования воздуха

Снимите:

- правое переднее колесо, а также правый и левый грязезащитные щитки,
- бампер,
- верхнюю поперечину (отвернув два болта нижнего крепления), и положите ее на двигатель,

- ремень привода вспомогательного оборудования (см. главу 07 "Натяжение ремня привода вспомогательного оборудования"),
- шкив насоса рулевого управления с усилителем,
- крепления насоса рулевого управления с усилителем на его опоре,

 генератор. Для этого отведите насос рулевого управления с усилителем.

ПРИМЕЧАНИЕ: на автомобилях без системы кондиционирования воздуха достаточно снять только ремень привода вспомогательного оборудования.

УСТАНОВКА

Установка генератора производится в порядке, обратном снятию.

Процедуру натяжения см. в главе **07** "Натяжение ремня привода вспомогательного оборудования".

СИСТЕМА ВПРЫСКА Технические характеристики

ОСОБЕННОСТИ МНОГОТОЧЕЧНОГО ВПРЫСКА НА ДВИГАТЕЛЕ К7Ј 700

- 90- контактный компьютер SIEMENS "SIRIUS 32", управляющий впрыском и зажиганием.
- Использование диагностических приборов (кроме XR25).
- Многоточечный впрыск функционирует последовательным образом без датчика положений цилиндра и распределительного вала. Поэтому установка фаз осуществляется программным образом с помощью датчика верхней мертвой точки.
- Сигнальная лампа впрыска на приборном щитке не действует.
- Особенности, связанные с системой противоугонной блокировки запуска двигателя:
 Установка системы противоугонной блокировки запуска двигателя 2^{ого} поколения требует специального способа замены компьютера.
- Возможны две схемы топливного контура:
 - контур с возвратом топлива в бак (регулятор расположен на топливораспределительной рампе),
 - контур без возврата топлива в бак (регулятор расположен на узле насоса и датчика уровня в сборе).
- Обороты холостого хода:
 - номинальный холостой ход

750 об/мин.

- Обороты холостого хода корректируется в зависимости от:
 - системы кондиционирования воздуха,
 - информации от реле давления рулевого усилителя,
 - электрической нагрузки.
- Максимальные обороты

6000 об/мин.

- Электромагнитный клапан очистки абсорбера управляется степенью циклического открытия (RCO) в зависимости от режима работы двигателя.
- Управление блоками электровентиляторов и сигнальной лампой температуры охлаждающей жидкости на щитке приборов осуществляется компьютером впрыска.

СИСТЕМА ВПРЫСКА

Работа системы противоугонной блокировки запуска двигателя

Данный автомобиль оснащен системой противоугонной блокировки запуска двигателя 2^{го} поколения.

ЗАМЕНА КОМПЬЮТЕРА ВПРЫСКА

Компьютеры впрыска поставляются без кодов, но готовыми к кодированию.

При замене компьютера в него необходимо ввести код автомобиля, затем убедиться в работоспособности системы блокировки запуска двигателя.

Для этого достаточно включить зажигание на несколько секунд, а затем выключить его. Система блокировки запуска двигателя включается при вынимании ключа.

ОСОБЕННОСТИ ПРОВЕРОК КОМПЬЮТЕРА ВПРЫСКА

Выньте ключ из замка зажигания. Через 10 секунд должна начать мигать красная лампочка системы противоугонной блокировки.

ВНИМАНИЕ:

Автомобили данной модели оборудованы компьютером впрыска специального типа, который должен быть закодирован для обеспечения его работоспособности.

Поэтому мы Вам настойчиво рекомендуем не испытывать взятые со склада или с другого автомобиля компьютеры, чтобы избежать проблем кодировки и раскодировки, что может привести к выходу из строя этих компьютеров.

ОПЕРАЦИЯ ОТМЕНЫ КОДА

В том случае, если в компьютер впрыска был занесен код, а компьютер подлежит возврату в магазин, то перед снятием с автомобиля, его обязательно следует раскодировать.

СИСТЕМА ВПРЫСКА Стратегия впрыск/кондиционер

КОМПРЕССОР КОНДИЦИОНЕРА ИМЕЕТ ПЕРЕМЕННЫЙ РАБОЧИЙ ОБЪЕМ ЦИЛИНДРА

На автомобилях с подобным типом механизма компьютер кондиционера более не устанавливается. Компьютер впрыска непосредственно управляет включением компрессора с учетом мощности, которую потребляет компрессор, и давления хладагента в контуре.

Для работы кондиционера используются следующие провода и контакты:

- провод на контакте 10 компьютера впрыска. По этому проводу передается информация о разрешении или запрещении на включение компрессора,
- провод на контакте 46, по которому передается информация о потребляемой мощности,
- провод на контактах 82 и 83. По нему подается напряжение на датчик давления хладагента,
- провод на контакте 18 датчика давления для передачи информации компьютеру впрыска.

При нажатии на переключатель **кондиционера**, компьютер впрыска разрешает включение компрессора в зависимости от значения параметров и устанавливает режим ускоренного холостого хода. Частота вращения на этом режиме может достигать **850 об/мин** в зависимости от мощности, потребляемой компрессором и давления хладагента.

ВНИМАНИЕ: значение параметра: **"PR потребляемая мощность"** никогда не равно 0, вне зависимости от того, включен компрессор или нет. Минимальное значение составляет **250 ватт**.

СТРАТЕГИЯ ВКЛЮЧЕНИЯ КОМПРЕССОРА КОНДИЦИОНЕРА

На некоторых режимах работы двигателя компьютер впрыска запрещает работу компрессора кондиционера.

Стратегия запуска двигателя

Работа компрессора кондиционера запрещена после запуска двигателя в течение 10 секунд.

Стратегия тепловой защиты

Компрессор не будет включен в том случае, если температура охлаждающей жидкости превышает 120 °C.

Стратегия поддержания максимальных оборотов

Компрессор отключается, если обороты двигателя выше 6200 об/мин.

Стратегия предотвращения остановки двигателя

Работа компрессора не разрешена, если обороты двигателя ниже **544 об/мин.** Он включается снова, когда число оборотов превышает **1000 об/мин.**

Восстановление рабочих характеристик

На 1^{ой} передаче, если положение потенциометра превышает **50** %, если обороты двигателя ниже **2300 об/мин**, и если скорость движения автомобиля ниже **4 км/ч**, работа компрессора запрещается в течение **7 секунд**. Работа компрессора разрешается, если обороты двигателя достигнут **2800 об/мин**, если скорость автомобиля превысит **15 км/ч**, или если изменится номер передачи.

СИСТЕМА ВПРЫСКА Коррекция оборотов холостого хода двигателя

СВЯЗЬ РЕЛЕ ДАВЛЕНИЯ РУЛЕВОГО УСИЛИТЕЛЯ - КОМПЬЮТЕР ВПРЫСКА

Компьютер впрыска получает информацию от реле давления рулевого усилителя (ее можно визуализировать на диагностических приборах). Она зависит от давления в гидравлической системе и текучести находящейся в ней жидкости. Чем давление выше, тем больше энергии потребляет насос рулевого управления с усилителем.

Компьютер впрыска изменяет обороты холостого хода двигателя, и делает их равными 850 об/мин.

ЭЛЕКТРИЧЕСКАЯ КОРРЕКЦИЯ ОБОРОТОВ ХОЛОСТОГО ХОДА В ЗАВИСИМОСТИ ОТ НАПРЯЖЕНИЯ АККУМУЛЯТОРНОЙ БАТАРЕИ И ОТ ЭЛЕКТРИЧЕСКОЙ НАГРУЗКИ

Коррекция оборотов холостого хода двигателя компенсирует падение напряжения при включении потребителя электроэнергии при малом токе зарядки батареи. Для этого увеличивают обороты холостого хода двигателя, в результате чего возрастает частота вращения генератора и, соответственно, напряжение зарядки батареи.

Чем ниже напряжение, тем значительней коррекция режима холостого хода. Таким образом, величина коррекции режима холостого хода - переменная. Коррекция режима холостого хода двигателя осуществляется тогда, когда напряжения становится ниже 12,7 В. Коррекция начинается с оборотов холостого хода и их максимальное значение - 865 об/мин.

ПРИМЕЧАНИЕ: после запуска холодного двигателя и длительной работы на холостом ходу, можно заметить резкое падение числа оборотов (примерно на **100 об/мин**). Этот скачок связан и наличием автомата разгона.

АДАПТИВНАЯ КОРРЕКЦИЯ ОБОРОТОВ ХОЛОСТОГО ХОДА

Эта коррекция эффективна только в том случае, если температура охлаждающей жидкости выше **75°C**, прошло **30 секунд** после запуска двигателя и он находится в фазе регулирования номинального холостого хода.

ЗНАЧЕНИЯ СТЕПЕНИ ЦИКЛИЧЕСКОГО ОТКРЫТИЯ НА ХОЛОСТОМ ХОДУ И ЕЕ АДАПТИВНОЙ КОРРЕКЦИИ

ПАРАМЕТР	Двигатели K7J 700
Номинальные обороты холостого хода	Х = 750 об/мин
Степень циклического открытия электромагнитного клапана регулировки холостого хода	8 % ≤ X ≤ 18%
Адаптивная коррекция степени циклического открытия клапана холостого хода	Крайние значения: – минимум: - 10 % – максимум: + 12 %

При каждой остановке двигателя, компьютер проводит регулировку шагового электродвигателя, выставляя его на нижний упор.

ВАЖНО: после удаления информации из памяти компьютера, обязательно запустите, а затем остановите двигатель. Это необходимо для саморегулировки шагового электродвигателя. Снова запустите его и оставьте работать на холостом ходу для регулировки адаптивной коррекции.

СИСТЕМА ВПРЫСКА Регулирование состава топливной смеси

Этот двигатель снабжен только одним кислородным датчиком, установленным на входе в каталитический нейтрализатор.

ПОДОГРЕВ ДАТЧИКА

Кислородный датчик подогревается по команде компьютера впрыска с момента запуска двигателя.

Подогрев кислородного датчика прекращается:

- если скорость автомобиля выше 145 км/ч (справочное значение),
- в зависимости от нагрузки и оборотов двигателя.

НАПРЯЖЕНИЕ ВХОДНОГО ДАТЧИКА

Значение параметра: "напряжение входного датчика", считываемое на диагностическом приборе (кроме XR25), представляет собой величину напряжения, которая передается компьютеру кислородным датчиком, установленным на входе каталитического нейтрализатора. Она выражена в милливольтах. При регулировании состава топливной смеси, величина напряжения должна быстро колебаться между

- двумя значениями:
 150 ± 100 мВ для бедной топливной смеси,
- 750 ± 100 мВ для богатой топливной смеси.

Чем меньше разность между минимальными и максимальными значениями, тем менее точна информация от датчика (обычно эта разность должна быть минимум в **500 мВ**).

ПРИМЕЧАНИЕ: в том случае, если эта разность мала, проверьте подогрев датчика.

КОРРЕКЦИЯ СОСТАВА ТОПЛИВНОЙ СМЕСИ

Значение параметра: "коррекция состава топливной смеси", считываемое на диагностическом приборе, представляет собой величину средней коррекции, вносимой компьютером в зависимости от состава смеси (каким его воспринимает кислородный датчик, установленный на входе в каталитический нейтрализатор).

Среднее значение коррекции составляет 128, а крайние - 0 и 255:

- если значение ниже 128: запрос на обеднение,
- если значение выше 128: запрос на обогащение.

СИСТЕМА ВПРЫСКА Регулирование состава топливной смеси

НАЧАЛО РЕГУЛИРОВАНИЯ СОСТАВА ТОПЛИВНОЙ СМЕСИ

Начало регулирования состава эффективно, если после начала работы прошло от **50 секунд** до **10 минут**, если температура охлаждающей жидкости выше **22** °C при отпущенной педали акселератора и если входной кислородный датчик готов к работе (достаточно прогрет).

Временная задержка от начала работы зависит от температуры охлаждающей жидкости:

- при 20 °C, временная задержка лежит в интервале между 20 и 192 секундами.

Если регулирование состава топливной смеси еще не начато, значение параметра равно 128.

Фаза "размыкания цепи регулирования"

При регулировании состава топливной смеси компьютер не учитывает показания датчика в следующих ситуациях:

- режим полной нагрузки,
- при большом ускорении,
- при замедлении (если есть информация об отпущенной педали),
- при отказе кислородного датчика.

РЕЗЕРВНЫЙ РЕЖИМ ПРИ ОТКАЗЕ КИСЛОРОДНОГО ДАТЧИКА

Если показание кислородного датчика, используемое для регулирования состава топливной смеси, является неправильным (изменяется очень мало или вообще не изменяется), то компьютер переходит к резервному режиму только после того, как неисправность фиксируется в течение **3 минут**. Только в этом случае неисправность будет запомнена, параметр: "коррекция состава топливной смеси" равен **128**.

Когда обнаруживается неисправность кислородного датчика и информация о ней уже занесена в память, осуществляется переход прямо к разомкнутой схеме регулирования.

СИСТЕМА ВПРЫСКА

Адаптивная коррекция состава топливной смеси

ПРИНЦИП

В фазе "замкнутой цепи регулирования", регулирование состава топливной смеси осуществляется путем изменения длительности впрыска так, чтобы получить коэффициент избытка воздуха как можно ближе к 1. Значение коррекции близко к 128, а крайние значения - 0 и 255.

Адаптивная коррекция состава топливной смеси позволяет сдвинуть заданный профиль впрыска так, чтобы значение параметра "регулирование состава топливной смеси" было равно **128**.

Поэтому, после повторной инициализации компьютера (возврат на значение **128** адаптивных коррекций), необходимо провести специальное дорожное испытание.

ПАРАМЕТР	Двигатели К7Ј 700
Коррекция состава топливной смеси	80 % ≤ X ≤ 180%
Адаптивная коррекция состава рабочей смеси	80 % ≤ X ≤ 176%
Адаптивная коррекция состава смеси на холостом ходу	80 % ≤ X ≤ 176%

ДОРОЖНОЕ ИСПЫТАНИЕ

Условия:

- горячий двигатель (температура охлаждающей жидкости > 75 °C),
- обороты двигателя не должны превышать 4800 об/мин.

Зоны давления для разгона во время испытания

	Диапазон N° 1 (мбар)	Диапазон N° 2 (мбар)	Диапазон N° 3 (мбар)	Диапазон N° 4 (мбар)	Диапазон N° 5 (мбар)
K7J 700	258 4	10 52	28 - — — — - 64	46 – – – – 7	64 - — — -882
	Среднее 334	Среднее 469	Среднее 587	Среднее 705	Среднее 823

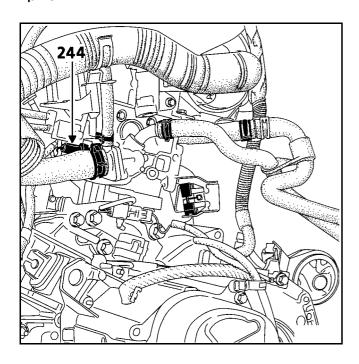
После этих испытаний коррекции начинают действовать.

Эти испытания следует продолжить при движении (спокойная езда и переменная) на дистанции от 5 до 10 километров.

Считайте после проведения испытаний значения адаптивных коррекций. Изначально равные 128, они должны измениться.

В противном случае, снимите значения после новых испытаний при строгом соблюдении их условий.

АНАЛИЗ ЗНАЧЕНИЙ, ПОЛУЧЕННЫХ В ХОДЕ ДОРОЖНОГО ИСПЫТАНИЯ


В случае недостатка топлива (форсунки загрязнены, давление, и расход топлива слишком малы, и т.д.), регулирование состава топливной смеси увеличивается таким образом, чтобы получить коэффициент избытка воздуха как можно ближе к 1. При этом адаптивная коррекция состава топливной смеси увеличивается так, чтобы значение коррекции колебалось около 128.

В случае избытка топлива, все происходит наоборот: регулирование состава топливной смеси и адаптивная коррекция уменьшаются так, чтобы значение коррекции было около 128.

СИСТЕМА ВПРЫСКА

Централизованное управление температурой охлаждающей жидкости

ЦУТОЖ

244 Датчик температуры охлаждающей жидкости (выдает информацию на компьютер впрыска и указатель температуры охлаждающей жидкости на щитке приборов).

Трехконтактный датчик, два контакта используются для передачи информации о температуре охлаждающей жидкости, а один - для индикации на приборном щитке.

Эта система снабжена единственным датчиком температуры охлаждающей жидкости, который подает сигнал на систему впрыска топлива, электровентилятор и сигнальную лампу температуры на щитке приборов.

Работа системы

Датчик 244 позволяет:

- показывать температуру охлаждающей жидкости на щитке приборов,
- сообщать компьютеру впрыска величину температуры охлаждающей жидкости.

Компьютер впрыска в зависимости от температуры охлаждающей жидкости управляет работой:

- системы впрыска,
- реле блока вентилятора системы охлаждения двигателя,
 - блок электровентилятора включается на малой скорости, когда температура охлаждающей жидкости становится выше °С, и выключается, когда температура становится ниже 96 °С,
 - блок электровентилятора включается на большой скорости, когда температура охлаждающей жидкости становится выше 102 °C, и выключается, когда температура становится ниже 100 °C,
 - блок электровентилятора может быть включен на малую скорость для устройства предотвращения перегрева и на малую или большую для кондиционера.
- сигнальная лампа температуры.

СИГНАЛЬНАЯ ЛАМПА ТЕМПЕРАТУРЫ ОХЛАЖДАЮЩЕЙ ЖИДКОСТИ

Сигнальная лампа включается компьютером впрыска, если температура охлаждающей жидкости становится выше **120** °C.

СИСТЕМА ВПРЫСКА Компьютер

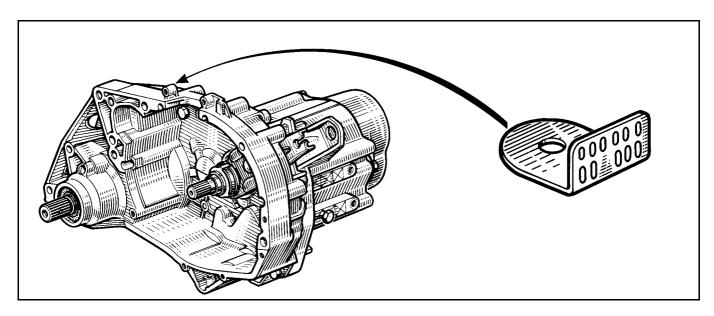
НАЗНАЧЕНИЕ КОНТАКТОВ ВХОДОВ-ВЫХОДОВ КОМПЬЮТЕРА ВПРЫСКА

61	31	1
62	32	2
63	33	3
64	34	4
65	35	5
66	36	6
67	37	7
68	38	8
69	39	9
70	40	10
71	41	11_
72	42	12
73	43	13
74	44	14
75	45	15

76	46	16
77_	47	17
78	48	18
79	49	19
80	50	20
81	51	21
82	52	22
83	53	23
84	54	24
85	55	25
86	56	26
87	57	27
88	58	28
89	59	29
90	60	30

1	\rightarrow	УПРАВЛЕНИЕ КАТУШКИ ЗАЖИГАНИЯ 2-3
3		МАССА СИЛОВОЙ ЦЕПИ
4	\rightarrow	УПРАВЛЕНИЕ ОЧИСТКОЙ АБСОРБЕРА
8	\rightarrow	УПРАВЛЕНИЕ РЕЛЕ БЭВ 1 ЦУТОЖ
9	\rightarrow	ЛАМПА ТЕМПЕРАТУРЫ ОХЛАЖДАЮЩЕЙ ЖИДКОСТИ
10	\rightarrow	УПРАВЛЕНИЕ КОМПРЕССОРА КОНДИЦИОНЕРА
12	\rightarrow	УПРАВЛЕНИЕ РЕГУЛЯТОРА ХОЛОСТОГО ХОДА
40		(KOHTAKT B)
13	\leftarrow	ВХОД ДАТЧИКА ТЕМПЕРАТУРЫ ОХЛАЖДАЮЩЕЙ ЖИДКОСТИ
15		МАССА ДАТЧИКА ДАВЛЕНИЯ
16	←	ВХОД СИГНАЛА ДАТЧИКА ДАВЛЕНИЯ В КОЛЛЕКТОРЕ
18	←	СИГНАЛ ДАТЧИКА ДАВЛЕНИЯ ХЛАДАГЕНТА
19		ЭКРАН ДАТЧИКА ДЕТОНАЦИИ
20	\leftarrow	ВХОД СИГНАЛА ДАТЧИКА ДЕТОНАЦИИ
24	\leftarrow	ВХОД СИГНАЛА ДАТЧИКА ЧАСТОТЫ ВРАЩЕНИЯ
		КОЛЕНЧАТОГО ВАЛА
26		ДИАГНОСТИКА
28		МАССА СИЛОВОЙ ЦЕПИ
29		+ ПОСЛЕ ЗАМКА ЗАЖИГАНИЯ
30		+ ДО ЗАМКА ЗАЖИГАНИЯ
32 33	\rightarrow	УПРАВЛЕНИЕ КАТУШКИ ЗАЖИГАНИЯ 1-4 МАССА СИЛОВОЙ ЦЕПИ
38	 →	УПРАВЛЕНИЕ РЕЛЕ БЭВ 2 ЦУТОЖ
39	\rightarrow	УПРАВЛЕНИЕ РЕЛЕ ПРИВОДА
41	$\stackrel{}{\rightarrow}$	УПРАВЛЕНИЕ РЕГУЛЯТОРА ХОЛОСТОГО ХОДА
		(KOHTAKT A)
42	\rightarrow	УПРАВЛЕНИЕ РЕГУЛЯТОРА ХОЛОСТОГО ХОДА
		(KOHTAKT C)
43	\leftarrow	СИГНАЛ ПОТЕНЦИОМЕТРА ДРОССЕЛЬНОЙ
		ЗАСЛОНКИ
45	\leftarrow	ВХОД СИГНАЛА КИСЛОРОДНОГО ДАТЧИКА
46	\leftarrow	СИГНАЛ КОНДИЦИОНЕРА
49 53	←	ВХОД ДАТЧИКА ТЕМПЕРАТУРЫ ВОЗДУХА
54	←	ВХОД СКОРОСТИ АВТОМОБИЛЯ ВХОД СИГНАЛА ДАТЧИКА ЧАСТОТЫ ВРАЩЕНИЯ
34	_	КОЛЕНЧАТОГО ВАЛА
56		ДИАГНОСТИКА
58	\leftarrow	СИСТЕМА ПРОТИВОУГОННОЙ БЛОКИРОВКИ
		ЗАПУСКА ДВИГАТЕЛЯ
59	\rightarrow	УПРАВЛЕНИЕ ФОРСУНКИ 1
60	\rightarrow	УПРАВЛЕНИЕ ФОРСУНКИ 3
63	\rightarrow	УПРАВЛЕНИЕ ПОДОГРЕВОМ КИСЛОРОДНОГО
		ДАТЧИКА
66 68		+ ПОСЛЕ ЗАМКА ЗАЖИГАНИЯ УПРАВЛЕНИЕ РЕЛЕ БЕНЗОНАСОСА
70	\rightarrow \rightarrow	ИНФОРМАЦИЯ ОБ ОБОРОТАХ ДВИГАТЕЛЯ ВМТ
72	$\stackrel{}{\rightarrow}$	УПРАВЛЕНИЕ РЕГУЛЯТОРА ХОЛОСТОГО ХОДА
_	-	(KOHTAKT D)
73		МАССА ДАТ ^Ч ИКА ТЕМПЕРАТУРЫ ОХЛАЖДАЮЩЕЙ
		жидкости
74		ПИТАНИЕ ПОТЕНЦИОМЕТРА ДРОССЕЛЬНОЙ
		ЗАСЛОНКИ
75		МАССА ПОТЕНЦИОМЕТРА ДРОССЕЛЬНОЙ
77		
77 78		МАССА ДАТЧИКА ТЕМПЕРАТУРЫ ВОЗДУХА ПИТАНИЕ ДАТЧИКА ДАВЛЕНИЯ
70 79		МАССА ДАТЧИКА ДЕТОНАЦИИ
80		МАССА КИСЛОРОДНОГО ДАТЧИКА
82		МАССА ДАТЧИКА ДАВЛЕНИЯ ХЛАДАГЕНТА
83		ПИТАНИЕ ДАТЧИКА ДАВЛЕНИЯ ХЛАДАГЕНТА
85	\rightarrow	ИНФОРМАЦИЯ О РЕЛЕ ДАВЛЕНИЯ РУЛЕВОГО
		УСИЛИТЕЛЯ (ЗАВИСИТ ОТ МОДЕЛИ)
89	\rightarrow	УПРАВЛЕНИЕ ФОРСУНКИ 4
89 90	$\begin{array}{c} \rightarrow \\ \rightarrow \end{array}$	

СЦЕПЛЕНИЕ Кожух сцепления и ведомый диск


МОДЕЛЬ АВТО- МОБИЛЯ	МОДЕЛЬ ДВИГА- ТЕЛЯ	кожух сцепления	ВЕДОМЫЙ ДИСК
LB03	K7J	480 CBO 2300	26 шлицов D = 181,5 мм E = 6,8 мм
		180 CPO 3300	

Сухое однодисковое сцепление с тросовым приводом.

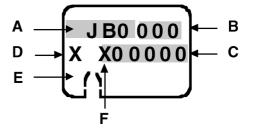
МЕХАНИЧЕСКАЯ КОРОБКА ПЕРЕДАЧ Идентификация

Этот тип автомобиля оборудован коробкой передач типа ЈВ.

В Руководстве по ремонту "Коробка передач ЈВ" даны указания по полному ремонту данного агрегата.

ИДЕНТИФИКАЦИОННАЯ ТАБЛИЧКА

A : тип коробки передачB : индекс коробки передач


С : заводской номер

D : завод-изготовитель

E : кернение, когда коробка передач агрегатирована с двигателем Е

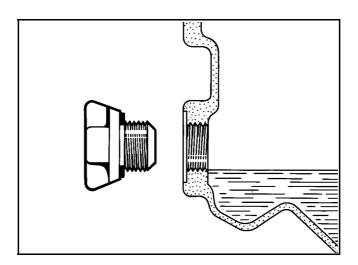
F : буква, которая ставится перед заводскими

номерами выше 999999

МЕХАНИЧЕСКАЯ КОРОБКА ПЕРЕДАЧ Передаточные отношения

JB1										
Индекс	Автомобиль	Цилиндри- ческая глав- ная передача	Редуктор привода спидометра	1 ^я	2 ^Я	3 ^я	4 ^я	5 ^я	Задняя передача	
926	LB03	14 63	21 19	<u>11</u> 41	<u>21</u> 43	28 37	30 29	<u>41</u> 31	11 39 26	

МЕХАНИЧЕСКАЯ КОРОБКА ПЕРЕДАЧ


Заправочная емкость картера - Используемые масла

ЕМКОСТЬ (л)

Пятиступенчатая коробка передач						
JB1	3,4					

Вязкость маслаTRX 75W 80W

ПРОВЕРКА УРОВНЯ МАСЛА

Заполните коробку передач маслом до нижней кромки отверстия.

Насос усилителя механизма рулевого управления

НЕОБХОДИМЫЕ ПРИСПОСОБЛЕНИЯ И СПЕЦИНСТРУМЕНТ

Mot. 453-01

Зажимы для гибких шлангов

Установите автомобиль на двухстоечный подъемник.

СНЯТИЕ

Отсоедините аккумуляторную батарею.

Снимите:

- правое колесо и правый грязезащитный щиток,
- ремень привода вспомогательного оборудования при помощи шестигранного гаечного ключа. Ключ позволит блокировать натяжной ролик после того, как его повернут.

Установите зажимы **Mot. 453-01** на трубопровод питания.

Отсоедините трубопроводы питания и высокого давления, примите меры к возможному вытеканию жидкости из **усилителя рулевого управления**.

ВНИМАНИЕ: генератор, размещенный под насосом, необходимо защитить от жидкости, вытекающей из контура **гидроусилителя рулевого управления**.

Отсоедините разъем насоса реле давления.

Снимите:

- три болта шкива насоса рулевого управления с усилителем,
- три болта крепления насоса рулевого управления с усилителем,
- насос рулевого управления с усилителем.

УСТАНОВКА

Установка производится в порядке, обратном снятию.

Залейте в систему жидкость и удалите воздух. Для этого поворачивайте руль из одного крайнего положения в другое при работающем двигателе.

СИСТЕМА КОНДИЦИОНИРОВАНИЯ ВОЗДУХА Общие сведения

ТЕХНОЛОГИЧЕСКИЕ МАТЕРИАЛЫ

 Компрессорное масло: SANDEN SP 10: 135 см³

- Хладагент:

R134a: 660 ± 35 г

Компрессор:SANDEN DV 6V 12

ОСОБЕННОСТИ

Вся система кондиционирования воздуха управляется компьютером впрыска (см. главу **Впрыск**).